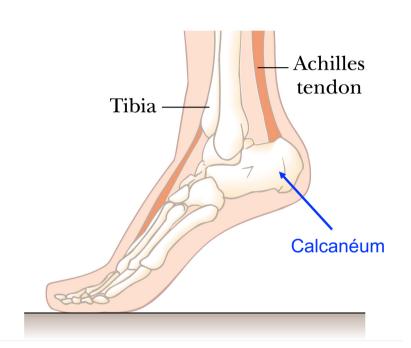


Physique Générale : Mécanique 12.01: Problème résolu: Statique: Equilibre sur la pointe des pieds

Sections SC, GC & SIE, BA1

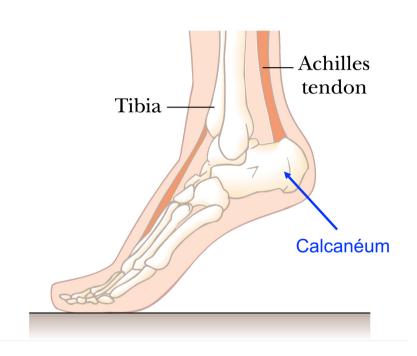
Dr. J.-P. Hogge


Swiss Plasma Center

École polytechnique fédérale de Lausanne

[■] Faculté

des sciences
de base



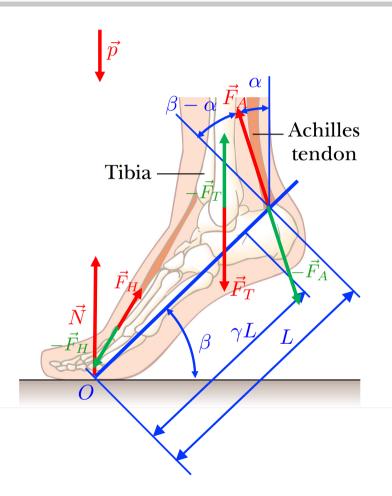
- Une personne de poids p se tient sur la pointe de pieds.
- Estimer les forces exercées par le tibia et le tendon d'Achille sur le calcanéum.

- Faculté

 des sciences
 de base
- SwissPlasmaCenter

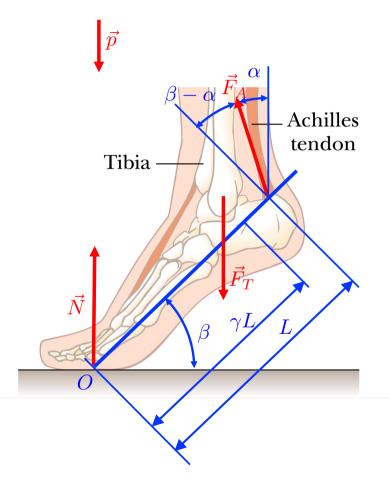
- Référentiel:
 - Laboratoire
- Système(s):
 - Corps entier
 - Le pied seul
- Contraintes:
 - Pas de contrainte particulière
- Equations utilisables:
 - Equations d'équilibre:

$$\sum \vec{F}^{\text{ext}} = 0$$


$$\sum \vec{M}_O^{\rm ext} = 0$$

On modélise le pied comme une tige rigide

- des sciences de base
- SwissPlasmaCenter


■ Faculté

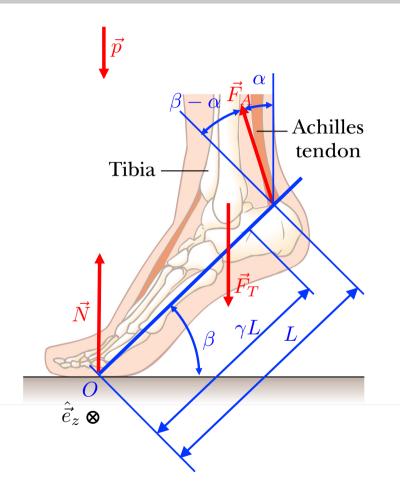
- Forces extérieures au syst 'corps':
 - \vec{N} : Force de soutien du sol
 - \vec{p} : Poids de la personne
- Forces extérieures au syst. 'pied'
 - \vec{N} : Force de soutien du sol
 - \vec{F}_T : Force tibia o calcanéum
 - \vec{F}_A : Force tendon \rightarrow calcanéum
 - $\vec{F}_H : \text{Force tendon} \to \text{orteils}$
- On définit encore:
 - L Distance entre le point d'appui sur le sol et le point d'attache du tendon
 - $ightharpoonup \gamma L$ Distance jusqu'au tibia
 - Angle entre le tendon et la verticale
 - β Angle d'élévation du pied

Equation de Newton appliquée au système 'Corps':

$$\sum \vec{F}^{\text{ext}} = M\vec{a}_G = 0$$
$$\vec{p} + \vec{N} = 0$$

Equation de Newton appliquée au système 'pied':

$$\vec{N} + \vec{F}_T + \vec{F}_A = 0$$


on projette sur l'axe vertical et on remplace N par p:

$$p + F_A \cos \alpha - F_T = 0$$

$$F_T = F_A \cos \alpha + p$$

■ Faculté des sciences de base

Théorème du moment cinétique appliqué au système 'pied' au point O:

$$\sum \vec{M}_O^{\text{ext}} = 0$$
$$F_T \gamma L \cos \beta \, \hat{\vec{e}}_z - F_A L \cos(\beta - \alpha) \, \hat{\vec{e}}_z = 0$$

avec
$$F_T = F_A \cos \alpha + p$$

$$F_A = p \frac{\gamma \cos \beta}{\cos(\alpha - \beta) - \gamma \cos \alpha \cos \beta}$$

Application:

$$\beta = 35^{\circ}, \alpha = 7^{\circ}, \gamma = 0.8$$

$$F_A \simeq 2.82 \, p$$

$$F_T \simeq 3.8 \, p$$

■ Faculté des sciences de base